MTH 111, Math. for the Architects, Exam I, Spring 2014

Ayman Badawi

(Each question $=10$ points, total points 100 points)

QUESTION 1. Find an equation of the ellipse with the vertices $(4,3),(1,7)$, and $(-2,3)$. Find the constant k. Find the foci. Make a rough sketch of such ellipse.

QUESTION 2. Find an equation of the hyperbola that is centered at $(2,1)$ and with constant $k=6$ such that $(2,6)$ is one of the foci. Find the second foci, find the vertices, and make a rough sketch of such hyperbola.

QUESTION 3. Given $x=1$ is the directrix line of a parabola that passes through the point $(6,5)$ and the line $y=2$ passes through the vertex of the parabola. Find the vertex, the focus, and make a rough sketch of such parabola. Then find an equation of the parabola. [Hint: there are two such parabolas, just find one]

QUESTION 4. Find the directrix, the focus, and the vertex of the parabola $y=0.5(x+5)^{2}+4$

QUESTION 5. Find the foci, the constant k, and the vertices of the ellipse $(x+2)^{2} / 25+(y-3)^{2} / 9=1$

QUESTION 6. Find the center, the foci, the vertices of the hyperbola $x^{2}-2 y^{2}-4 y=18$

QUESTION 7. Find the foci, and the equation of the below ellipse:

1

QUESTION 8.

Find the foci, and the equation of the below hyperbola:

QUESTION 9. Find an equation of the plane P that contains the line $L: x=t, y=1-t, z=2 t$ and the point $Q=(1,0,5) \quad$ [note that the point Q does not lie on L]

QUESTION 10. a) Find the distance between the point $Q=(2,2,1)$ and the plane $x+3 y+5 z=15$
b) The line $L_{1}: x=5 t, y=4-t, z=3+t$ intersects the line $L_{2}: x=1+2 s, y=9-3 s, z=2 s$ at a point Q. Find Q

Faculty information

MTH 111, Math for Architects, Exam II, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let $f(x)=-x^{2}+8 x-1$. The slope of the tangent line to the curve at the point $(1,6)$
a. 6
b. -2
c. 5
(ii) Let $f(x)=-x^{3}+12 x+1$. Then $f(x)$ increases on the interval
a. $x \in(-\infty,-2) \cup(2, \infty)$
b. $x \in(-2,2)$
c. $x \in(-\sqrt{12}, \sqrt{12})$
d. none of the above
(iii) let $f(x)=3 e^{\left(x^{2}-2 x\right)}+4$. Then $f^{\prime}(2)$
a. 6
b. 3
c. 2
d. none of the above
(iv) Let $f(x)=x e^{(x-2)}+e^{(x-2)}+3$. Then
a. $f(x)$ has a local minimum at $x=-2$
b. $f(x)$ has a local maximum at $x=2$
c. $f(x)$ has a local minimum at $x=-1$
d. $f(x)$ has a local maximum at $x=-1$
e. none of the above
(v) Let $f(x)=-x(x-18)^{5}$. Then
a. $f(x)$ has a local maximum at $x=3$
b. $f(x)$ has a local minimum at $x=18$
c. $f(x)$ has a local maximum at $x=18$
d. $f(x)$ has a critical value when $x=-18$
e. none of the above
(vi) Given $x^{2}+y^{2}-x y=0$. Then $d y / d x=$
a. $\frac{2 y-x}{y-2 x}$
b. $\frac{y-2 x}{x-2 y}$
c. $\frac{2 x-y}{2 y-x}$
d. $\frac{y-2 x}{2 y-x}$
(vii) Given $f(x)=\sqrt{4 x-3}+\frac{1}{x}+2$. Then $f^{\prime}(1)=$
a. 4
b. 2
c. 1
d. 3
(viii) Given the curve of $f^{\prime}(x)$. Then

a. $f(x)$ is decreasing on the the interval $(1,2)$
b. $f(x)$ is decreasing on the interval $(-\infty, 0)$
c. $f(x)$ is increasing on the interval $(-\infty, 2)$
d. $f(x)$ is decreasing on the interval $(-\infty, 0)$
e. above, there are more than one correct answer.
(ix) Using the curve of $f^{\prime}(x)$ above. Then
a. $f(x)$ has a local min. value at $x=0$ but no local max. values.
b. $f(x)$ has neither local min. values nor local max. values
c. $f(x)$ has a local max. value at $x=2$
d. $f(x)$ has a local min. value at $x=0$ and a local max. value at $x=1$.
(x) Using the curve of $f^{\prime}(x)$ above. Then
a. the curve of $f(x)$ must be concave down on the interval $(0,1)$.
b. the curve of $f(x)$ must be concave up on the interval $(2, \infty)$
c. the curve of $f(x)$ must be concave down on the interval $(-\infty,-1)$
d. above, there are more than one correct answer.
(xi) Given $f^{\prime}(3)=f^{\prime}(-1)=f^{\prime}(6)=0, f^{(2)}(2)=4, f^{(2)}(-1)=-5$, and $f^{(2)}(6)=0$ (note that $f^{(2)}$ means the second derivative of $f(x)$). Then
a. $f(x)$ has neither local min. value nor local max. value at $x=6$.
b. $f(x)$ has a local max. value at $x=3$
c. $f(x)$ has a local max. value at $x=-1$.
d. None of the above
(xii) Given x, y are two positive real numbers such that $x+2 y=26$ and $x y$ is maximum. Then $x y=$
a. 52
b. 84.5
c. 78
d. 169
e. none of the above
(xiii) What is the area of the largest rectangle that can be drawn as in the figure below (note $f(x)=-0.5 x+4$ and $g(x)=0.5 x-4)$?

a. 16
b. 32
c. 64
d. none of the above
(xiv) Given the points $A=(2,4)$ and $B=(0,6)$. What is the point c on the x-axis so that $|A C|+|C B|$ is minimum?
a. $(2,0)$
b. $(1.2,0)$
c. $(1.5,0)$
d. $(1,0)$
e. None of the above
(xv) A particle moves on the curve $4 x^{2}+6 y^{2}=22$. If the x-coordinates increases at rate $0.3 /$ second, what is the rate of change of y when the particle reaches $(2,1)$?
a. 0.4
b. -0.4
c. -0.3
d. none of the above
$\left(x\right.$ xi) Given $f(x)=(4 x-7)^{11}, f^{\prime}(2)=$
a. 11
b. 44
c. 4
(xvii) Given $f(x)=\ln \left[\frac{5 x-14}{3 x-8}\right]$. Then $f^{\prime}(3)$
a. 2
b. $\frac{5}{3}$
c. 15
d. None of the above
(xviii) Given $(-4,2),(0,0),(6,8)$ are vertices of a triangle. The area of the triangle is
a. 44
b. 22
c. $\sqrt{44}$
d. $\sqrt{22}$
e. None of the above.
(xix) $\lim _{x \rightarrow 2} \frac{e^{(3 x-6)}+x-3}{x^{3}-x^{2}-4}=$
a. 0.5
b. 0
c. 0.25
d. none of the above
(xx) $\lim _{x \rightarrow 3} \frac{x^{2}-18}{(x-3)^{2}}=$
a. 0
b. $-\infty$
c. ∞
d. DNE (does not exist)
e. -9

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 111, Math for Architects, Final Exam, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let $f(x)=-x^{3}+8 x-1$. The slope of the tangent line to the curve at the point $(1,6)$
a. 5
b. 6
c. 13
(ii) Let $f(x)=-2 x^{3}+24 x+1$. Then $f(x)$ increases on the interval
a. $x \in(-\infty,-2) \cup(2, \infty)$
b. $x \in(-\infty,-\sqrt{12}) \cup(\sqrt{12}, \infty)$
c. $x \in(-\sqrt{12}, \sqrt{12})$
d. $x \in(-2,2)$
(iii) let $f(x)=3 e^{\left(x^{2}-x-2\right)}+4 x+5643217689$. Then $f^{\prime}(2)$
a. 13
b. 11
c. 9
d. 7
(iv) Let $f(x)=(x+1) e^{(x-2)}+3 x+14523$. Then
a. $f(x)$ has an inflection point at $x=-3$
b. $f(x)$ has an inflection point at $x=-2$
c. $f(x)$ has no inflection points
d. $f(x)$ has an inflection point at $x=-1$
e. $f(x)$ has an inflection point at $x=2$
(v) Let $f(x)=-x(2 x-32)^{7}+1550$. Then
a. $f(x)$ has a local maximum at $x=32 / 9$
b. $f(x)$ has a local maximum $x=2$
c. $f(x)$ has a local minimum at $x=32 / 9$
d. $f(x)$ has a critical value when $x=-16$
(vi) Given $x^{2}+y^{2}-x y+x e^{y}+y e^{x}-203421897654=0$ Then $d y / d x=$
a. $\frac{2 y-x+e^{x}}{y-2 x-e^{y}}$
b. $\frac{y-2 x-e^{y}}{x-2 y-e^{x}}$
C. $\frac{2 x-y+e^{y}}{2 y-x+e^{x}}$
d. $\frac{y-2 x-e^{y}}{2 y-x+e^{x}}$
(vii) $\lim _{x \rightarrow 3} \frac{x^{2}-10}{(x-2)^{2}}=$
a. -1
b. $-\infty$
c. ∞
d. DNE (does not exist)
(viii) Given the curve of $f^{\prime}(x)$ on the interval $[-16,15]$ (i.e., $-16 \leq x \leq 15$). Then

a. $f(x)$ is decreasing on the the intervals $(-16,-10) \cup(-5,11)$
b. $f(x)$ is decreasing on the interval $(5,13)$
c. $f(x)$ is increasing on the intervals $(-10,-5) \cup(11,15)$
d. $f(x)$ is increasing on the interval $(-16,13)$
(ix) Using the curve of $f^{\prime}(x)$ above. Then
a. $f(x)$ has a critical value at $x=-10$ but $f(x)$ has neither min. value nor max. value at $x=-10$.
b. $f(x)$ has a local max. value at $x=-5$ and a local min. value at $x=11$ and $x=-10$.
c. $f(x)$ has a local min. value at $x=5$
d. $f(x)$ has a local max. value at $x=11$.
(x) Using the curve of $f^{\prime}(x)$ above. Then
a. the curve of $f(x)$ must be concave down on the intervals $(-16,-10) \cup(-5,11)$.
b. the curve of $f(x)$ must be concave up on only the interval $(-16,-5)$
c. the curve of $f(x)$ must be concave up on the intervals $(-16,-5) \cup(5,15)$
d. the curve of $f(x)$ must be concave down on the interval $(-10,11)$
e. the curve of $f(x)$ must be concave down only on the interval $(-10,5)$
(xi) Given x, y are two positive REAL numbers such that $x y=3$ and $x+12 y$ is minimum. Then $x+12 y=$
a. 37
b. 15
c. 12
d. 6.5
e. 13
(xii) What is the area of the largest rectangle that can be drawn as in the figure below (note $f(x)=-x^{2}+8 x+11=$ $\left.27-(x-4)^{2}\right)$?

a. 54
b. 144
c. 126
d. 216
e. 108
(xiii) the distance between the point $Q=(1,1,6)$ and the plane: $3 x-4 z-9=0$ is
a. 6
b. 2
c. 0.2
d. 1.2
(xiv) Given the points $A=(3,4)$ and $B=(8,10)$. What is the point c on the horizontal line $y=2$ so that $|A C|+|C B|$ is minimum?
a. $\left(5 \frac{1}{7}, 2\right)$
b. $(4,2)$
c. $\left(5 \frac{6}{7}, 2\right)$
d. $(3,2)$
e. $(8,2)$
f. $(5.5,2)$
(xv) Given $f(x)=\ln \left[\frac{(4 x-7)^{5}}{3 x-5}\right]$. Then $f^{\prime}(2)$
a. 17
b. $\frac{20}{3}$
c. $\frac{4}{3}$
d. 4
e. 5
f. 2
(xvi) $\lim _{x \rightarrow 2} \frac{e^{(4 x-8)}+x^{2}-5}{x^{3}+x^{2}-12}=$
a. 0.5
b. $\frac{5}{16}$
c. 0.25
d. 0.8
e. 0
(xvii) Let C be an arbitrary point on the ellipse $\frac{(x+1)^{2}}{4}+y^{2}=9$, and let c_{1}, c_{2} be the foci of the ellipse. Then $\left|C c_{1}\right|+\left|C c_{2}\right|=$
a. 4
b. 12
c. 6
d. 2
(xviii) Given the parabola $y=0.1(x-2)^{2}-2$. Then the directrix is
a. $\mathrm{x}=4.5$
b. $y=4.5$
c. $y=2.5$
d. $y=-4.5$
e. $y=-2.5$
(xix) Let P be the parabola as in the above question. Given that the point $Q=(12,8)$ lies on its curve, and C be its focus. Then $|Q C|=$
a. 7.5
b. 3.5
c. 5.5
d. 12.5
e. 10.5
(xx) The intersection of the plane $x+y=0$ and the plane $2 x-z=0$ is the following line.
a. $x=-t, y=t, z=-2 t$
b. $x=-t, y=-t, z=-2 t$
c. $x=t, y=t, z=-2 t$
d. $x=t, y=-t, z=-2 t$
(xxi) Given the hyperbola $\frac{(x-1)^{2}}{9}-\frac{y^{2}}{16}=1$. Let c_{1}, c_{2} be the foci of the hyperbola, and C be an arbitrary point on the curve. Then $\left|\left|C c_{1}\right|-\left|C c_{2}\right|\right|$
a. 6
b. 10
c. 4
d. 8
e. 3
f. 5
(xxii) One of the following is a foci of the above hyperbola.
a. $(1,5)$
b. $(-1,5)$
c. $(6,0)$
d. $(1+\sqrt{7}, 0)$
e. $(1, \sqrt{7})$
(xxiii) $\int(2 x-7)^{8} d x=$
a. $\frac{(2 x-7)^{9}}{18}+\mathrm{c}$
b. $\frac{(2 x-7)^{9}}{4.5}+\mathrm{c}$
c. $\frac{(2 x-7)^{9}}{9}+\mathrm{c}$
d. $\frac{(2 x-7)^{9}}{2}+\mathrm{c}$
(xxiv) $\int x e^{\left(x^{2}+4\right)}+4 x-1 d x=$
a. $0.5 e^{\left(x^{2}+4\right)}+2 x^{2}-x+c$
b. $2 e^{\left(x^{2}+4\right)}+x^{2}-x+c$
c. $e^{\left(x^{2}+4\right)}+2 x^{2}-x+c$
d. $2 e^{\left(x^{2}+4\right)}+2 x^{2}-x+c$
(xxv) Given $f^{\prime}(x)=4 e^{(2 x-6)}+4 x+1$ and $f(3)=27$. Then $f(x)=$
a. $4 e^{(2 x-6)}+2 x^{2}+x+2$
b. $2 e^{(2 x-6)}+2 x^{2}+x+4$
c. $e^{(2 x-6)}+2 x^{2}+x+5$
d. $0.5 e^{(2 x-6)}+2 x^{2}+x+5.5$
(xxvi) one of the following vectors can be drawn inside the plane : $3 x-2 y+z=4$
a. $2 i+3 j+k$
b. $3 i-2 j+k$
c. $3 i-2 j-k$
d. $3 i-2 j-13 k$
(xxvii) Given the points $(0,1,1),(0,2.53),(2,1,1)$ are vertices of a triangle. The area of the triangle is :
a. 25
b. 12.5
c. 5
d. 2.5
(xxviii) Find the area of the region bounded by $f(x)=3 x^{2}-8 e^{(x-2)}$ and $g(x)=6 x-8 e^{(x-2)}$ (see the region below and notice that the region is between $0 \leq x \leq 2$)

```
l
```


a. 20
b. 4
c. 36
d. 16
(xxix) One of the following lines lies entirely inside the plane: $x+2 y+3 z-6=0$
a. $x=1-2 t, y=1+4 t, z=1-2 t$
b. $x=1+3 t, y=1+2 t, z=1$
c. $x=1+t, y=1+2 t, z=1+3 t$
d. $x=t, y=t, z=3-t$
$(\mathrm{xxx}) L_{1}: x=t, y=2 t, z=1+t, L_{2}: x=1+2 s, y=2-s, z=3+2 s$. Then
a. L_{1} intersects L_{2} at $(1,2,3)$
b. L_{1} intersects L_{2} at $(1,1,2)$
c. L_{1} intersects L_{2} at $(1,2,2)$
d. L_{1} does not intersect L_{2}
(xxxi) Given $(0,1,1),(0,2,3),(2,1,1)$ lie in a plane P. Then an equation of P is
a. $-4(y-1)-2(z-1)=0$
b. $2 x+4(y-1)-2(z-1)=0$
c. $4(y-1)-2(z-1)=0$
d. $4(y-1)+2(z-1)=0$
e. $-2 x-4(y-1)-2(z-1)=0$

Faculty information

